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I.  THE FARADAY DISK 
 

 This problem, according to some, violates the conservation of the 
angular momentum; others will explain it using the relativistic 
transformation, as Professor SERRA-VALLS1 does.  Many will remain 
satisfied applying to it the denomination of exceptional case. 
 
   Here the results of a "New Dynamics (ND) of Irreversible 
Mechanical Systems"2 which is isomorphic with the Electromagnetism of 
MAXWELL-LORENTZ, will be used.  We will study the case of a spiral 
in the symmetrical field of a magnet, located in the normal axis to the same 
by its centre. (see fig 1). 
 
 
 
 
 
   

        
 
 
 
 
 
 
 
 
 
 

                                         
1  A SERRA–VALLS.  El motor turbo electrodinámico.  Ed. IVIC.  Caracas.  2009. 
2  JOHN RIUS-CAMPS.  Los Fundamentos Cosmológicos de la Mecánica y las Leyes 
Fundamentales de la Dinámica.  Anuario Filosófico.  Vol. IX.  1976.  Universidad de 
Navarra. 
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 In order to study the present problem we will apply the expression of  
the "LORENTZ Force"  of Electromagnetism: 
 
 
    FL  =  q(E + v x B)    (1) 
 
 Considering that does not exist the electric field and is only present 
the magnetic field  B  (external to the system), created by the cylindrical 
magnet. The force  F  that acts on a charge  q , in an element of current of 
the conductor in spiral, is external to the system like  B ,  and will be 
normal to it in this point  (see fig 1);  the expression  (1)  is 
 
 
    F  =  q(v x B)     (2) 
 
 
 The result of the addition of all forces  F , on a spiral conductor, will 
be an external pair that will cause its rotation.  One reaches the immediate 
conclusion that the angular momentum in the turn of the FARADAY disc 
(spiral) is not conserved. 
 
 Classical Dynamics (CD) demands the conservation of the angular 
momentum and it is not possible to be applied to the present study. In the 
New Dynamics (ND) the same force  F ,  on a mass  m  and charge  q , is 
given by the expression,  
 
 
    F  =  m(v x ω∗)     (3) 
 
 
With  ω∗   = (dv/dt)/(dρ/dt)b  (b is the versor according to the binormal  in 
the FRENET's frame).  Since the referred rotations only have sense to a 
referential of inertia like the one of our system, and it is external to the 
same; it results that  ω∗ ,  as the field  B  , is external also.  In addition, the 
force  (2)  changes sign with  v ,  that is to say, when the current sense is 
reversed; the same happens to the force  (3)  of the ND.  Consequently, 
force  F , expressed mechanically  (3) ,  must agree with. its electro-
magnetic expression (2).  Obviously the angular momentum is not 
conserved either here. 
 
 On the other hand the expression of the total force over the mass m  
in the ND is 
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    Ftotal  =  m(a + v x ω∗)    (4) 
 
 
being  a  the acceleration of  m ; therefore, the "LORENTZ force"  (1)  is 
the electromagnetic expression of  (4) .  It is evident, also, the isomorphism 
between the Electrodynamics and the ND. 
 
 
 NOTES: 
 
 1.  When the tangential acceleration  dv/dt  on  m  is null, and 
then  ω∗  = 0  with  F = 0 .  This does not happen in our case, being 
variable the moment of inertia of the mass  m  that runs along the spiral.  
Also is  F = 0  when the spiral is reduced to a circumference. 
 
 Like has proved professor SERRA-VALLS3, the logarithmic spiral, 
of constant  1 ,  is the most efficient.  
 
 2.  In order to explain the conservation of the angular momentum 
some authors maintain that the outer circuit, formed by the battery and the 
conductors that connect with the axis and the periphery of the disc, 
constitutes the stator, whereas the disc would be the rotor4.  The same 
doctor SERRA-VALLS has tested that after blinding the external circuit, 
the disc continues turning, and thus it would be necessary to affirm the 
non-conservation of the angular momentum, but this fact results incredible 
to him, and goes to the relativistic solution of the phenomenon.  In the final 
section: II. STUDY OF THE "FARADAY DISK, is clearly expressed 
this blindage possibility. 
 
  3. In order to facilitate the understanding, see the study of the 
Normal Supplementary Acceleration (NSA), departure point of the ND, 
that is included in the next section. 

 
 
 
 

                                         
3  Doctor ALBERTO SERRA-VALLS, in his book El Motor Turbo Electrodinámico y 
la Nueva Ley de Inducción (Venezolan Institute of Scientific researches. 2009), presents 
the substitution of the disc by a conductor in the form of logarithmic spiral located in 
the same plane and centre. Also the magnet can be replaced by the magnetic field 
created by the current in the spiral. 
4  Ibidem. 
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II.  ESTUDY OF THE "FARADAY DISK" 

 
 The problem can be simplified replacing the FARADAY DISK by a 
horizontal radial rotating bar around a vertical conductor axis. This would 
be the rotor. The stator is formed by a circular conductor and a second 
radial bar, both fixed to an inertial frame  XYZ.  The battery is in contact 
with the vertical axis-conductor. A contact–brush mechanism at the end of 
the first bar, closes the circuit with the circular conductor (see the figures  
A  and  B) 
 
 
 
 
 
 
 

 
 
 
 
 
       FIG.  A  (horizontal projection) 
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 The magnet is a vertical and symmetrical cylinder, fixed with respect 
to the inertial frame XYZ. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       FIG.  B  (vertical projection) 
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 On the fixed radial conductor acts the LORENTZ force  F ,  normal 
to the same; another identical force, acts on the bar–disc of FARADAY, 
producing two pair of forces, equal and opposed; only turns this last bar, 
because the radial conductor is fixed with respect to inertial frame XYZ. 
(see  Fig.  A  and  B).  At first sight it seems that the angular momentum is 
conserved, as it demands the Classical Dynamics (CD), but if the radial 
conductor is blinded with respect to the magnetic field, stops existing the 
normal LORENTZ force, but the FARADAY disk will continue turning. 
Thus it is allowed to affirm that in this motor the angular momentum is not 
conserved.5.  If both radial bars could turn freely, then we would have two 
FARADAY's disks, superposed, that turn in inverse sense6. There is no 
action-reaction between both. 
 
 Also, observing the Figures  A  and  B, one concludes that the 
circuit, to apply the Induction Law of  FARADAY or rule of the flow, 
consists of a horizontal sector (fig. A) and a vertical rectangle (fig. B), and 
in the last one the flow is null by the symmetry of the system, forming both 
a dihedron; in addition, the rectangle surface can be reduced to zero when 
both radial conductors were practically coplanar.  Obvious the result would 
be the same one obtained applying the "LORENTZ's force"7. Conse-
quently the FARADAY disk does not constitute an exception to the "flow 
rule". 

 
 
 
 
 
 
 
 
 
 

                                         
5  Professor ALBERTO SERRA-VALLS in his book, El Motor Turbo Electrodinámico   
y la Nueva Ley de Inducción, after blinding the external conductor, reaches the same 
conclusion, but does not accept it because it seems to him "impossible".  Textually 
writes: "Cuando el año 61me percaté que el conductor que conecta el borde del disco de 
FRADAY constituye el estator me pregunté si era posible blindar dicho comductor del 
campo magnético del imán.  En caso afirmativo, no podría funcionar sin violar la Ley 
de  la Conservación del Momento Angular.  Por más intentos que hice de blindar el 
conductor, el disco no dejó de funcionar.  No pudiendo medir la fuerza de la reacción 
sobre el conductor y no creyendo en la violación de la ley;  (...)" 
6  Vid. ibidem.  pp, 47–49  y  pp. 55–56 . 
7  Ibidem.  pp. 44–47 . 
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SUPPLEMENTARY NORMAL ACCELERATION  
an* 

 
 

KINEMATIC A ND DYNAMIC  MEANING 
 OF ANGULAR VELOCITY   ω* 

 
 

 1. At first, we begin with the study of the trajectory of a material 
point  m  from the kinematical point of view exclusively.  In classical 
kinematics a differential  ds  of arc in the trajectory is substituted by the 
corresponding in the osculating circle in order to calculate the acceleration 
vector.  For this purpose a FRENET’s referential frame is used.  The 
acceleration components in this circle are 
 
 
   as  =   (dv/dt)s  and  aρ  =   -(v2/ρ)n (1) 
 
 
Where  s  and  n  are the  versors.   In this frame whose versors are  s , n , b   
the positive sense is determined by the velocity sense, by the sense towards 
convexity and by the vector product:  b = s × n ,  respectively.  The 
angular velocity is 
 
 
    ω    =   (v/ρ)b 
 
 
 A definite trajectory has a well defined evolute, and in the calculation 
of the normal component in the expressions  (1)  the differentials  dv  and   
dρ  are obviously not taken into account.  But, as we will demonstrate, 
when  dv ≠ 0  and  dρ ≠ 0 ,  the arc of the evolute does not correspond with 
the real one: it turns locally at an angular velocity 
 
 
    ω∗   =  (dv/dρ))b 
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and the same thing occurs with the corresponding arc of trajectory in the 
osculating circle. 
 

  In order to explain the kinematics meaning of this angular velocity  
ω∗  ,  we shall  study an element  ds  of trajectory which corresponds to the  
dρ    of the evolute; they are both located on the plane of osculation (see 
Fig.1  when  dv/dt > 0 ;  and Fig. 2  when  dv/dt < 0).  Thus we can 
consider the trajectory as being locally plane and referred to an intrinsic 
frame with versors  s , n , b ,  formed by the tangent, normal and the 
binormal.  The arc  ds  of the trajectory is determined by the points  A , B  ,  
and the  dρ   ,  of the evolute, on account of its equivalent points  A , B  

 
.    The speed of the particle in  A  is  v  and in  B  it is  v + dv .  The  

radii of curvature  at these points are:  ρ + dρ  and  ρ .  The angle turned by 
the radius of curvature when it passes from  A  to  B  is 
 
 
    dθ  =  ds/ρ 
 
 
and the corresponding angular speed will be as we have seen 
 
 
    ω  =  dθ /dt   (with    ω   =  ω b ) 
 
 
We can also write:  ω = v /ρ ,  which evidently does not depend on  dv  and  
dρ .  When we calculate the centripetal acceleration we get the last 
expression  (1): 
 
 
    aρ  =  -(v2/ρ)n 
 
 
in which the increases  dv , dρ ,  are not considered, as they do not affect it.  
It is the consequence of replacing the  ds  of trajectory by the 
corresponding one in the osculating circle at the same point.  However, if 
we observe the real trajectory carefully, we see that is characterized by 
having a well determined evolute (see Fig. 1, when  dv/dt > 0, and Fig. 2, 
when dv/dt < 0).  When  dv  is dispensed with, in the study of centripetal 
acceleration, it means that starting out from point  A  we arrive at  B'  but 
not at the real point  B ;  and the same should occur to the centre of 



 13 

curvature:  A  is located in the evolute, as it is the starting point, but  B'  
lays outside of the real evolute (see Fig. 1  and  Fig. 2), whose point is  B .  
It is evident that the centripetal acceleration is correctly determined, but it 
is also clear that the arc of the evolute must coincide with what is 
determined by points  A  and  B  in the figure, and not by the  A  and  B' ,  
as happens when  dv  and  dρ  are omitted.  In order to rectify this 
deficiency it is necessary to rotate  AB'  an angle 
 
 
    dθ*  =BB'/dρ 
 
 
so that it coincides with the  dρ   in the evolute, with a finite  angular 
velocity  (see Fig. 1  and Fig. 2)  whose module is expressed by 
 
 
  (BB'/dρ)/dt  =  (d2s/dρ)/dt  =  dv/dρ  =  dθ*/dt  =  ω* 
 
 
This angular velocity shows that the simplification of replacing the 
trajectory with the osculating circle in each point means that it is necessary 
to turn locally the arc of the evolute, with angular velocity  ω∗  ,  so that it 
coincides with the real one.  But this arc  AB'  of the evolute must be 
normal  to the corresponding  AB''  of the trajectory, rotated also  dθ* ,  
with respect to the initial  AB  (see Fig. 1  and  Fig. 2).  It will be necessary 
to turn AB'  this angle, in the same sense (when  dv/dt > 0) and in the 
opposite sense (when  dv/dt < 0), so that it coincides with the real one .  As 
a result, the radius  ρ  has increased in a second order infinitesimal amount: 
 
 
   B'B''  =  dsdθ∗  (when  dv/dt > 0) 
 
 
and 
 
 
   B'B'' =  –dsdθ∗  (when  dv/dt < 0) 
 
 
and the immediate result is a  supplementary normal acceleration: 
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 αρ*  =  B'B''/dt2  =   ds dθ*/dt2  =  vω*   (when  dv/dt > 0) 
 
 αρ*  =  B'B''/dt2 = – ds dθ*/dt2 = – vω*  (when  dv/dt < 0) 
 
 
superimposed to the normal acceleration  aρ  (1).   So the total normal 
acceleration  is 
 
 
   aρ +  aρ*  =  -(vω + vω*)  =  -v(ω – ω*)  
           (2) 
   aρ  +  aρ*  = -(vω  - vω*)  =  -v(ω + ω*)  
 
 
in the two possible cases. 
 
Obviously the tangential acceleration  as = dv/dt  remains unchanged.  
Taking in account  (2  )we get in vector form the total acceleration: 
 
 
   ass + aρn + aρ*n  =  a + vω∗n  =  a – v× ω∗  
           (3) 
   ass + aρn + aρ*n  =  a – vω∗n  =  a + v× ω∗  
 
respectively. 
 
 
 
 2. From the dynamical point of view, if we want to calculate the 
total normal force correctly, the total normal acceleration (2) must be 
taken into account.  So the expression of this normal force will be 
 
 
   fn = -mv (ω  – ω∗)n  =  mv × (ω   – ω∗) 
and 
   fn = -mv (ω  +  ω∗)n  =  mv × (ω   + ω∗) 
 
 
in both possible cases. 
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 Now, in summary, taken in account the expression  (3),  the total 
force acting on the material point is 
 
 
    f  =  m(a  ±  v × ω∗)    (4) 
 
 
(which is isomorphic  with the LORENTZ electromagnetic force). 
 
 The angular velocity  ω∗   will only cease to exist when the trajectory 
is a circumference or the speed  v  is constant, as it follows observing  Fig.1  
and  Fig. 2  (see also the cases of Fig. 1'  and  Fig. 2'). 
 
 The result (4) is surprising: even more so when we remember that 
"LORENTZ's force" is exclusively experimental.  Moreover, in FRENET's 
trihedron the value  v  of speed is always positive in the sense in which the 
particle is moving .  We know that while the moving point follows the 
trajectory, the centre of curvature, at the corresponding point, describes the 
evolute, and we can take the sign of  dρ  as  positive because the sense of its 
movement follows the changing sense of the velocity v .  This result is of 
the major importance (see the two possible cases in  Figs. 1, 2,  and  1', 2') 
because  ω = dv/dρ   changes sign, when the movement is inverted (dv 
changes to  –dv  whereas  dρ ,  in the evolute does not change).  When the 
movement is inverted, the versor  s× b = –n  maintains its sense, because  s  
and  b  simultaneously change sign; but the supplementary normal 
acceleration  a* = v× ω∗  = s× bvω∗   changes sing when  ω∗  changes to 
–ω* .  Consequently, the reversibility of the trajectory in CD does not hold 
up in the ND,  
 
 The CHAOS  presence in physical phenomena has its foundation in 
this irreversibility. 
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