JOHN RIUS-CAMPS

SUPPLEMENTARY NORMAL ACCELERATION $a_{n}{ }^{*}$
 26^{TH} February 2009

ORDIS EDITIONS

ORDIS EDITIONS

GRAN VIA DE CARLOS III, 59, $2^{\circ}, 4^{\text {a }}$
BARCELONA 08028
$26^{\text {TH }}$ February 2009

SUPPLEMENTARY NORMAL ACCELERATION a_{n} *

KINEMATIC A ND DYNAMIC MEANING OF ANGULAR VELOCITY ω^{*}

1. At first, we begin with the study of the trajectory of a material point from the kinematic point of view exclusively. In classical kinematics a differential $d s$ of arc in the trajectory is substituted by the corresponding in the osculating circle in order to calculate the acceleration vector. For this purpose a FRENET's refferential frame is used. The acceleration components in this circle are

$$
\begin{equation*}
\left.\boldsymbol{a}_{s}=(d v / d t) \boldsymbol{s} \quad \text { and } \quad \boldsymbol{a}_{o}=-\left(v^{2} / \rho\right)\right) \boldsymbol{n} \tag{1}
\end{equation*}
$$

And where \boldsymbol{s} and \boldsymbol{n} are the versors, in this frame: $\boldsymbol{s}, \boldsymbol{n}, \boldsymbol{b}$, whose positive sense in the tangent, normal and binormal, is determined by the velocity sense, by the sense towards convexity and by the vectorial product: $\boldsymbol{b}=\boldsymbol{s} \times \boldsymbol{n}$, respectively. The angular velocity is

$$
\boldsymbol{\omega}=(v / \rho)) \boldsymbol{b}
$$

A definite trajectory has a well defined evolute, and in the calculation of the normal component in the expressions (1) the differentials $d v$ and $d \rho$ are obviously not taken into account. But, as we will demonstrate, when $\quad d v \neq 0$ and $d \rho \neq 0$, the arc of the evolute does not correspond with the real one: it turns locally at an angular velocity

$$
\boldsymbol{\omega} *=(d v / d \rho)) \boldsymbol{b}
$$

and the same thing occurs with the corresponding arc of trajectory in the osculating circle.

In order to explain the kinematic meaning of this angular velocity $\omega *$, we shall study an element $d s$ of trajectory which corresponds to the $\boldsymbol{d} \rho$ of the evolute; they are both located on the plane of osculation (see Fig. 1 when $d v / d t>0$; and Fig. 2 when $d v / d t<0$). Thus we can consider the trajectory as being locally plane and referred to an intrinsic frame with versors $\boldsymbol{s}, \boldsymbol{n}, \boldsymbol{b}$, formed by the tangent, normal and the binormal. The arc $\boldsymbol{d} \boldsymbol{s}$ of the trajectory is determined by the points A, B, and the $\boldsymbol{d} \boldsymbol{\rho}$, of the evolute, on account of its equivalent points A, B. The speed of the particle in A is v and in B it is $v+d v$. The radii of curvature at these points are: $\rho+d \rho$ and ρ. The angle turned by the radius of curvature when it passes from A to B is

$$
d \theta=d s / \rho
$$

and the corresponding angular speed will be as we have seen

$$
\omega=d \theta / d t \quad(\text { with } \quad \omega=\omega \boldsymbol{b})
$$

We can also write: $\omega=v / \rho$, which evidently does not depend on $d v$ and $d \rho$. When we calculate the centripetal acceleration we get the expression (1) in the form

$$
\left.\boldsymbol{a}_{o}=\left(-v^{2} / \rho\right)\right) \boldsymbol{n}
$$

in which the increases $d v, d \rho$, are not considered, as they do not affect it. It is the consequence of replacing the $d \boldsymbol{s}$ of trajectory by corresponding one in the osculating circle at the same point. However, if we observe the real trajectory carefully, we see that is characterized by having a well determined evolute (see Fig. 1, when $d v / d t>0$, and Fig. 2, when $d v / d t<$ 0). When $d v$ is dispensed with, in the study of centripetal acceleration, it
means that starting out from point A we arrive at B^{\prime} but not at the real point B; and the same must also be said of its equivalent centre of curvature: A is located in the evolute, as it is the starting point, but B^{\prime} lay outside of the real evolute (see Fig. 1 and 2), whose point is B. It is evident that the centripetal acceleration is correctly determined, but it is also clear that the arc of the evolute must coincide with what is determined by points A and B in the figure, and not by the A and B^{\prime}, as happens when $d v$ and $d \rho$ are omitted. In order to rectify this deficiency it is necessary to rotate $A B^{\prime}$ an angle

$$
d \theta^{*}=B B^{\prime} / d \rho
$$

so that it coincides with the $\boldsymbol{d} \boldsymbol{\rho}$ in the evolute, with a finite angular velocity (see Fig. 1 and Fig. 2) whose module is expressed by

$$
\left(B B^{\prime} / d \rho\right) / d t=\left(d^{2} s / d \rho\right) / d t=d v / d \rho=d \theta^{* / d t}=\omega^{*}
$$

This angular velocity shows that the simplification of replacing the trajectory with the osculating circle in each point means that it is necessary to turn locally the arc of the evolute, with angular velocity $\omega *$, so that it coincides with the real one. But this arc $A B^{\prime}$ of the evolute must be normal to the corresponding $A B^{\prime \prime}$ of the trajectory, rotated also $d \theta^{*}$, with respect to the initial $A B$ (see Fig. 1 and Fig. 2). It will be necessary to turn $A B^{\prime}$ this angle, in the same sense (when $d v / d t>0$) and in the opposite sense (when $d v / d t<0$), so that it coincides with the real one . As a result, the radius ρ has increased in a second order infinitesimal amount:

$$
B^{\prime} B^{\prime \prime}=d s d \theta \quad(\text { when } d v / d t>0)
$$

and

$$
B^{\prime} B^{\prime \prime}=-d s d \theta \quad(\text { when } d v / d t<0)
$$

and the immediate result is a supplementary normal acceleration:

$$
\begin{aligned}
& \alpha_{o}^{*}=B^{\prime} B^{\prime \prime} / d t^{2}=d s d \theta^{* / d t^{2}}=v \omega^{*} \quad(\text { when } d v / d t>0) \\
& \alpha_{\rho}^{*}=B^{\prime} B^{\prime \prime} / d t^{2}=-d s d \theta^{* / d t^{2}}=-v \omega^{*}(\text { when } d v / d t<0)
\end{aligned}
$$

superimposed to the normal acceleration a_{ρ} (1). So the total normal acceleration is

$$
\begin{aligned}
& a_{\rho}+a+_{\rho}{ }^{*}=-\left(v \omega+v \omega^{*}\right)=-v\left(\omega-\omega^{*}\right) \\
& a_{\rho}+a+_{\rho}{ }^{*}=-\left(v \omega-v \omega^{*}\right)=-v\left(\omega+\omega^{*}\right)
\end{aligned}
$$

in the two possible cases.
Obviusly the tangential acceleration $a_{s}=d v / d t$ remains unchanged. In vectorial form we get

$$
\begin{align*}
& a_{s} \boldsymbol{s}+a_{\rho} \boldsymbol{n}+a_{\rho} * \boldsymbol{n}=\boldsymbol{a}+v \omega * \boldsymbol{n}=\boldsymbol{a}-\boldsymbol{v} \times \boldsymbol{\omega} * \tag{2}\\
& a_{s} \boldsymbol{s}+a_{\phi} \boldsymbol{n}+a_{\theta} * \boldsymbol{n}=\boldsymbol{a}-v \omega * \boldsymbol{n}=\boldsymbol{a}+\boldsymbol{v} \times \omega *
\end{align*}
$$

respectively.
2. Now, from the dynamical point of view, if we want to calculate the total centripetal force correctly, the total normal acceleration (16) must be taken into account. So the expression of this force will be

$$
\boldsymbol{f}_{\boldsymbol{n}}=-m v(\omega-\omega *) \boldsymbol{n}=m \boldsymbol{v} \times(\boldsymbol{\omega}-\boldsymbol{\omega} *)
$$

and

$$
f_{n}=-m v(\omega+\omega *) n=m v \times(\omega+\omega *)
$$

in both possible cases.

In summary, taken in account the expression (2), the total force acting on the material point is

$$
\begin{equation*}
\boldsymbol{f}=m(\boldsymbol{a} \pm \boldsymbol{v} \times \boldsymbol{\omega} *) \tag{4}
\end{equation*}
$$

(which is isomorphic with the LORENTZ electromagnetic force).

The angular velocity $\omega *$ will only cease to exist when the trajectory is a circumference or the speed v is constant, as it follows observing Fig. 1 and Fig. 2 .(see also the cases of Fig 1' and Fig.2').

The result (4) is surprising: even more so when we remember that "LORENTZ's force" is exclusively experimental. Moreover, in FRENET's trihedron the value v of speed is always positive in the sense in which the particle is moving . We know that while the moving point follows the trajectory, the centre of curvature, at the corresponding point, describes the evolute, and we can take the sign of $d \rho$ as positive because the sense of its movement follows the changing sense of the velocity \boldsymbol{v}. This result is of the major importance (see the two possible cases in Figs. 1, 2', y 1', 2) because $\omega=d v / d \rho$ changes sign, when the movement is inverted ($d v$ changes to $-d v$ whereas $d \rho$, in the evolute does not change). When the movement is inverted, the versor $\mathbf{s} \times \boldsymbol{b}=-\boldsymbol{n}$ manteins its sense, but the supplementary acceleration $\boldsymbol{a}^{*}=\boldsymbol{v} \times \boldsymbol{\omega}^{*}=\mathbf{s} \times \boldsymbol{b} v \omega$ changes it when ω^{*} changes to $-\omega^{*}$. Consequently, the reversibility of the trajectory in CD does not hold up in the ND,

The CHAOS presence in physical phenomena has its foundation in this irreversibility.

Supplementary Normal Acceleration (when $d v / d t<0$)

$$
a_{n}{ }^{*}=d^{2} \rho * / d t^{2}
$$

FIG. 1

Supplementary Normal Acceleration (when $d v / d t>0$)

$$
a_{n}{ }^{*}=d^{2} \rho * / d t^{2}
$$

FIG. 2

Supplementary Normal Acceleration
(running in inverse direction, with $d v / d t<0$)

$$
a_{n} *=d^{2} \rho * / d t^{2}
$$

FIG. 1'

Supplementary Normal Acceleration
(running in inverse direction, with $d v / d t>0$)

$$
a_{n}{ }^{*}=d^{2} \rho * / d t^{2}
$$

FIG. 2'

John RIUS-CAMPS

Doctor Architect,
Professor at the UNIVERSIDAD DE NAVARRA.
Member of the REAL SOCIEDAD ESPAÑOLA DE FISICA.

Home address:
Gran Via de Carlos III, 59, $2^{\circ}, 4^{\text {a }}$ 08028, BARCELONA.

E-mail jsriuscamps@coac.net
E-mail john@irrevresiblesystems.com

Tel: $\quad 93-3301069$

BARCELONA, $26^{\text {TH }}$ June 2008
(Revised, 26^{TH} February, 2009)

