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1. INTRODUCTION.

What is entropy?  We have been dealing with this concept since
CLAUSIUS, but it is still obscure, probably because it is extraordinarily
abstract, as Henri Poincaré affirmed.  With BOLTZ-MANN's investigations,
at the dawn of this century, something more of its significance was understood
as a result of the statistical study of the problem.  Entropy was defined
according to the thermodynamic probability  W :

0SkLnWS +=

BOLTZMANN's constant is  k ;  with the advantage that  S0  is not
indeterminate, as in the classical definition.

This study seeks to arrive at a mechanical understanding of the
problem of entropy, based on the principle of energy conservation in an
isolated system and on the concepts of kinetic energy and potential energy in
which the internal energy of the same is definitively transformed.

We particularly noticed the necessity for internal energy to be
additive in order for BOLTZMANN's principle to be applied, enabling us to
find the canonical distribution of energy in a group of particles in statistical
equilibrium.  It must also be additive if we wish the entropy, in its classical
definition, to be additive.  That requirement is adopted in this study, together
with the condition of the system being in equilibrium, in order to define the
entropy.

On the other hand, the thermodynamic probability,  W ,  of a
macrostate, is closely connected to the corresponding "function of distribution
of velocities", characterised by the parameter  β ,  which in turn depends on
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the average quadratic speed1  v (r. m. s.),  of the movement of molecules in the
system.  All this gave us reason to believe that there might exist a close
relationship between the entropy,  S ,  and the kinetic energy,  Uc  of the
system.

The preceding considerations are of a basically heuristic nature,
but this often occurs when problems are raised, many of which are
subsequently solved by logical processes starting out from well established
and defined principles.

In order to formulate the entropy of a system we must begin with
the usual requirements:

- it must be additive  or extensive.

- increasingly monotonous  with the internal energy of the system.

- without dimensions.

- homogeneous of first order.

We shall also distinguish between a simple system, with all its
parts being homogeneous among themselves, and a composite system , with
two or more simple systems separated by barriers or walls, which may be
either rigid or elastic.  In this sense a system of this kind is heterogeneous.
We shall define the entropy by starting with simple homogeneous systems in a
procedure which is similar to the one used in statistical mechanics.  It will
generally suffice to consider composite systems made up of two simple
subsystems since the results can immediately be extended to any number of
them.

In the following sections we will expound the fundamental points,
trying to avoid long-winded details for the sake of clarity and simplicity.
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2. INTERNAL ENERGY.

The additivity of the internal energy,  U , of a system is frequently
postulated, but it is a very demanding condition which the majority of real
problems do not actually satisfy.  Obviously this energy is the sum of two
terms: kinetic energy,  Uc ,  and potential energy,  Up ,  so that

pc UUU +=

The first is always additive and is defined by

2
2
12

iii2
12

ii2
1

c mvvNvmU === ∑∑ µ

(with   systemthe of   speed.m.s..vmNm iii rand === ∑∑ µ )

When  µ i   is the molar mass (or molecular if we are considering
molecules) of each one of its parts or simple subsystems (in the case of a
simple system, its homogeneousness requires that all the  µ i   are equal).  The
second term,  Up  ,  is generally made up of two parts: one additive and the

other non-additive:

UP =UP
addit +Up

non addit

Likewise, we can break up internal energy into two parts:

additnon
p

addit
pc U)UU(U ++=
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The term in brackets corresponds to additive energy since  Uc  is always
additive.  Thus it can be seen that insisting that  U  must be additive is an
excessive simplification; even in the ideal gases, whose internal energy is
totally kinetic (principle of equipartition), since there is still the potential of
the elastic shock, which, at least in part, is not additive since it depends on the
number of shocks per unit of time and these depend on the average distance
between molecules (according to the density, which varies with the volume
υ ,  in a closed system).

On the other hand, the fact that entropy is additive –in the
classical formulation– means that internal energy must be so too.  Since
entropy is an extensive function it may only depend on the additive part of  U ,
in the new formulation which is given below.

According to thermodynamics, internal energy can be expressed
by the fundamental equation

U  =  U(S, υ, N1, ....... Nr)

Function of the entropy, volume, and molar numbers.  Since it depends on the
volume  u ,  it will not be additive in general, as volumetric variations entail
the modification of distances of the different parts (or molecules) and, thereby,
variation of the non-additive potential energy.  If entropy, in accordance with
the initial hypothesis, is a function –continuous, increasingly monotonous and
which can be differentiated– of internal energy, we can write the preceding
fundamental equation like this:

S  =  S(U, υ, N1, ....... Nr)

and if the system is isolated, then the internal energy,  U , is constant:

U  =  Uc  +  Up  =  constant
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as in the "First Principle".  In this case the volume is also constant.  It must
also be

0
S
U

,

>






r1 N  .....  ,N υ∂
∂

when  S  is additive, it may only depend –directly– on the additive part of  U
and, as seen earlier, it will not depend on  υ  either.  We aim to find an
expression for it which satisfies this condition.  Thus it will be:

S  =  S(Uaddit, N1, ........ Nr)

Indirectly it may depend on the non-additive energetic fraction, inasmuch as
the kinetic energy  Uc  is in relation to this potential which influences its
variations, and we have already seen that  Uc  is additive; but these are already
included in its instantaneous value.  The last expression can be written like
this:

),,S r1
addit
pc N ....... N U  S(U= +

if we require that the system should be closed, it must then be

S =  S(U p  +  U p
addit ) (and "a fortiori" if it is isolated)

As we shall see, entropy only makes sense in systems in steady
equilibrium (or quasi-steady, that is, infinitely slow).  Here we need an
additional hypothesis, which is justified by the theorem of the virial in many
cases, and the fact is that in each simple system it occurs that

c
addit
p UttanconsU ⋅=
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The value of the constant coefficient will be characteristic of each system.
Thus the preceding formulation gives this result:

Uaddit  =  Uc  +  U p
addit   = Uc(1 + constant)  =  AUc

and it is,

S  =  S(Uaddit )  =  S(AUc)

This conclusion is important, as it enables us to understand what
entropy is, through a prism which is different from the customary ones based
on caloric or statistical considerations.

In an isolated system, which is restrictive with regard to matter,
energy and volume, it will be that  U = constant ,  but the kinetic energy may
vary and hence the entropy may also do so.

It will enable us to find the last functional dependence of  S  ,
with the condition of steady equilibrium, once we have defined the
temperature of a simple and therefore homogeneous system.

3. TEMPERATURE OF A SIMPLE SYSTEM 
AND EXPRESSION OF ENTROPY.

We define temperature in the usual way, starting out from the
condition of increasing monotony in relation to the internal energy:

0
S
U

T
r1 N.......,N,

>



=

υ∂
∂
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which in our approach to the problem and in an isolated system, can be written

    
dS

AdU = 
S

U = T c
addit

∂
∂

[with  Uc = 12Nµv2 ]

Since we are dealing with a homogeneous system, all the molecules will be
equal, with the same mass  µ ,  so that the simple system's total mass will be

m  =  Nµ (when  N  is the number of molecules)

We shall set the condition that the temperature has the dimensions
of an energy which, in our case and given the simplicity of its expression, will
be those of  Uc ;  it must moreover be an intensive  function.  The simplest
expression is

2
2

c va = 
N

vNa = 
N

2Ua = T µ
µ

when,  a ,  is a constant which is characteristic of each simple system and  v
the average quadratic speed (r. m. s,) of the molecules of which it is made up.
From this expression and the preceding one we get the following result:

v
dv

N
a
A

 = 
va
dvAN

 
va

Amvdv
 = 

T
AdU

 = dS 2
c

µ
µ

µ

whose immediate integration leads us to

0 S+ vLnN
a
A

 = S



12

equivalent to

0c

0c0
2

2
1

S + LnU
2
N

c 

=  S  + LnU
2a
AN

 = S + )mv(Ln
2a
AN

 = S

which is additive, can be differentiated and is increasingly monotonous with
Uc ,  that is, with  Uaddit .  It has no dimensions.  The constant          c = A/a  is
likewise characteristic of each simple system.

It does not satisfy the NERNST-PLANCK axiom, since it takes
infinite values when the temperature tends towards zero.  In order to solve this
difficulty the following expression can be put forward:

S* = cNLn(v+1) + S*

whose first term is annulled with  T ,  when  v →  0  ,  but now the expression
for the temperature will be somewhat different.  In effect,

1)+v(va = 
cN

vdvAN
 = 

*dS
AdU

 =* T
1+v

dv
c µ

µ

in which  T* = T  when  v >> 1 .  This last expression is valid in those real
cases where the velocity satisfies this last condition, even when close to the
absolute zero.  It has the advantage that the level of reference S* , does not
remain undetermined; we can choose  S* = 0 ,  when  T* = 0 .

4. THERMIC EQUILIBRIUM IN A COMPOSITE 
SYSTEM.

For greater simplicity and still speaking in general terms, we shall
imagine a composite system made up of two simple systems: (1) and (2) .  Its
kinetic energy is
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Uc  =  Uc
(1)  + )2(

cU

and the additive internal energy will be

Uaddit  =  AUc  =  A1Uc
(1)  + A2Uc

(2)   =

2
22222

12
11112

1 vNA + vNA µµ

the corresponding entropy will be

0222111
(2)(1)  S+ LnvNc +  LnvNc =  S+  S= S

In order for there to be equilibrium, it is not enough that  dU = 0 ,
since the internal energy may be constant (total isolated system) and yet there
may not be equilibrium.  So another requirement is that the entropy should be
extremal:

dS  =  dS(1) + dS(2)  =  0

If the two simple subsystems we are looking at are separated from
each other by rigid adiabatic walls, that also prevent matter passing through,
they are then independent.  Their internal energy is constant and if they are in
steady equilibrium the entropy of each one will be so too.  Let us suppose now
that –without any transfer of matter– both systems start to interact, that is, they
exchange energy (for instance, by means of a diathermic separation); the
equilibrium ceases and the composite system evolves towards a new situation
of equilibrium.  If this is reached, it will be

dU  =  dUaddit + dUnon addit  =  0
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dS  =  dS(1) + dS(2)  =  0

since the equilibrium is steady, then it is

dUaddit  =  0 dUnon addit  =  0

which, together with the preceding condition, leads us to

dUaddit  =  dAUc  =  A1N1µ1v1dv1  +  A2N2µ2v2dv2  =  0

dS =  c1 N1
dv1

v1

 +  c2 N 2 
dv2

v2

 =  
A1

a1

N1
dv1

v1

 +  
A2

a2

N 2
dv2

v2

 =  0

whose compatibility requires:

0 = 
va
1

va
1

vv

2211

2211 µµ

and from this

 
va
v

 = 
va
v

11

22

22

11 µµ
a1µ1

2
1v  = a2µ2v2

2

that is to say, the temperatures of both simple systems must be equal as a
necessary condition for equilibrium.  This result can be extended to any
composite system with a finite number of simple systems which interact with
each other in the above-mentioned conditions.
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5.   ADDITIVE CHARACTER OF ENTROPY.

We looked first of all at a simple and thereby homogeneous
system: all the molecules were equal with mass  µ .  In the preceding
exposition we have tacitly assumed that the velocity was the same for all the
N  molecules of which it is made up.  The entropy of each molecule is

s  =  cLn v + s0

and for the whole system,

S  =  Ns =  cNLn v + S0

obviously in this case  v   coincides with the average quadratic speed of the
system.  But the fact of the matter is that , even with steady equilibrium, the
speeds of the molecules are different, they are distributed (as in, for example,
MAXWELL's distribution).  In this case, to calculate the entropy we must
proceed in the following way:

S  =  c1Ln v1 + ... + cNLn vN + ′ S 0   =  cLn(v1v2 ... vN) + ′ S 0

(taking the average value  c).  If we introduce the "geometric mean" of the
speeds  ˜ v  , the result will be:

S  =  cLn ˜ v N + ′ S 0 in which ˜ v  = (v1 v2 ...vN )1/N

And since  S  is determined at less than a constant  ′ S 0  ,  it is also equivalent to
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S  =  cLn(µ ˜ v )N + ˜ S 0

Nonetheless, as we know, the "geometric mean" is less or equal to the
"arithmetical mean" which in turn, because of CAUCHY-SCHWARZ's
inequality, is less or equal to the "quadratic mean", so that

S  =  cLn(µ ˜ v )N + ˜ S 0   =  S
~

 +
N

v+...+v+v
 cLn 0

N
N21





≤ µ

cLn(mv )N + ˜ S 0   = S
~

 +  
N

v+...+v+v
cLn 0

N

2

1
2
N

2
2

2
1























≤ µ

cLn(mv)N + ˜ S 0   =  cNLnv + S0 max   =  Smax

This maximum entropy,  Smax ,  cannot generally be obtained, since it is only
possible when all the velocities are equal and thus it is evidently

˜ v   =  v   =  v

We have made this slight digression to demonstrate that entropy
is additive with regard to the parts which we may consider in the system, if we
express it according to the average geometrical velocity,  ˜ v  .  It also serves to
point out the existence of an upper limit, Smax ,  (for the same kinetic energy
Uc ).  However, it is perfectly possible to make  S  depend on the average
quadratic velocity  v ,  since the relationship between the three:  ˜ v  ,  v  ,  v ,  is
in accordance with a constant coefficient which only affects the value of the
reference  S0  (system in steady equilibrium).



17

We shall now look at what happens in a composite system made
up of several simple subsystems.  Let us suppose that we are dealing with  n ;
we shall have,

S  =  S(1) + S(2) +....+ S(n)  =

c1N1Ln v1 + c2N2Ln v2 + ... + cnNnLn vn + S0

in which  v1  and  v2 ... vn  are the corresponding average quadratic speeds  (r.
m. s.).  As before, it is

=   S+
N

v...vv
 cLn = S 0

N
n

N
2

N
1

n21








 ⋅⋅⋅
  cLn ˜ v  + S0

(in which  N = N1 + N2 +....+ Nn).  It is also shown here that:

S  =  cLn ˜ v  + S0  = [ ] ≤  S
~

 + )v( )v()v( cLn 0
N

nn
N

22
N

11
n21 µµµ L

= S + 
N

vN+ ... + vN
cLn 0

N
nnn111 ′




 µµ
 cLn(µv )N + ˜ S 0   ≤

=+




















 S

~
 

N
vN ++ vN

cLn 0

N
2
nnn

2
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2
1
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 cLn(µv)N + ˜ S 0  =

cNLn v + So max  =  Smax
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(with  N1µ1 + N2µ2 +....+ Nnµn = total mass = Nµ ).  The maximum entropy,
Smax ,  can only be obtained if all the  r. m. s.  are identical in each subsystem,
but this is not usually possible.  However, as we saw earlier when dealing with
the two systems, entropy reaches an extremal value when the system evolves
from an initial state of equilibrium towards another final state of equilibrium,
in which all the temperatures (at least in part) become equal, since  dS = 0 .
Further on we shall see that if this second situation of steady equilibrium is
obtained in an isolated system, the final entropy is greater than the initial
entropy.

6. INCREASE OF ENTROPY IN AN ISOLATED 
SYSTEM.

The property of entropy being increasingly monotonous with the
internal energy,  U ,  of the system is expressed by:

T  =  0 > 
dS

AdU
 = 

S
U

 =
S
U c

addit

N ... N , r1
∂

∂
∂
∂

υ







 (with  Uaddit = Uc + Up
addit  = AUc ,  as we know, by hypothesis).  Clearly, in

these conditions,  S  increases and decreases according to whether  Uc  does so
(at most, in an exceptional case it will remain constant).  If the system remains
energetically isolated, it will conserve its inner energy

U  =  Uc + Up  =  constant

If  Up  decreases,  Uc  will increase.  If the system changes from one state of
steady equilibrium to another one, also steady, the entropy must increase,
since in Mechanics (Statics) steady equilibriums are those in which all the
possible virtual movements of the system imply a negative work; for this
reason, if the system evolves (having lost its steadiness) towards another
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steady state, it means that  Up  decreases; otherwise, this evolutionary process
would not take place.  The final entropy will be greater than the initial one,
since it varies monotonously with  Uc ;  exceptionally it might remain constant
as mentioned earlier.  The impossibility of passing from one state of
equilibrium directly to another one (both of them steady) without an increase
in the entropy is the basis of the irreversibility of the process.

In this sense, thermodynamics is governed by the same laws of
steady equilibrium as Mechanics (Statics).  If the process is quasi-static it
means that it is reversible at all times, thus  dS = 0  and the entropy will
therefore remain constant (d 2S = 0).

Obviously, the system can evolve without obtaining steady
equilibrium, then the entropy will increase or decrease, passing through
situations of unsteady equilibrium, of relative maximums or minimums (or
points of inflexion of zero derivative), in which  dS = 0 ,  but the entropy does
not obtain a constant value; it does not become stabilized and the system is
oscillating.  If there is inner dissipation the oscillation will diminish until a
steady equilibrium is obtained.

We shall now analyse some specific paradigmatic cases that are
useful to complete the preceding exposition.

We have already seen what corresponds to a composite system
formed of two simple subsystems, separated by a rigid diathermic wall; the
whole is isolated and rigid (see section 4.-).  The temperature should be equal,
it only had to be seen that the final entropy was greater than at the beginning.
This is immediate, so we have:

U  =  AUc + U p
non addit   =  constant

but, since the volume remains constant in both subsystems, we get

U p
non addit   =  constant

consequently
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AUc  =  addit
pc

)2(
c2

)1(
c1 UUUAUA +=+   = constant

if the system evolves it means that  Up
addit   decreases and then  S  will increase.

7. ANALYSIS OF SOME COMPOSITE
SYSTEMS.

a.    Equilibrium in a rigid system made up of two simple
systems, separated by a diathermic mobile wall (piston).

There is no flow of matter: the molar numbers are constant.  The
internal energy is also constant because we are considering it as an isolated
whole.  We have:

U  =  Uc + Up
addit  + U p

non addit   =  constant

with

Uc  =  Uc
(1) +  Uc

( 2) U p
addit =  U p

addit (1)  +  U p
addit (2)

U p
non addit   cannot be broken down into different quantities since it is the group

potential energy.  The volumes may vary and satisfy

)2()1(  υυ +   =  constant

Since entropy is additive, it only depends on the additive internal energy,

Uaddit  =  A1Uc
(1)  + A2Uc

(2)
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and in steady equilibrium it must be,

dS  =  dS(1) + dS(2)  = 0 = 
T

dUA

T

dUA
)2(

)2(
c2

)1(

)1(
c1 +

together with:

dUaddit = A1 dUc
(1)  + A2 dUc

(2)  = 0 (and likewise,  dU p
non addit  = 0 )

with the immediate result:

1
T ( 1)  –  1

T (2)  =  0

The temperatures must be equal when steady equilibrium is obtained.

On the other hand, the non-additive potential satisfies

AUc + U p
non addit   =  constant

and the virtual work in the position of equilibrium must be zero:

p(1)dυ(1) + p(2)dυ(2)  =  0

since it depends on the variation of the non-additive potential and this, as seen
earlier, complies with

dU p
non addit   =  0
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and being  dυ(1) = –dυ(2) ,  it will be

p(1)  =  p(2)

Finally, the conservation of energy mentioned earlier on requires
that, in steady equilibrium,  U p

non addit   should be minimum and the term  AUc

should be maximum; the immediate consequence is that entropy grows when
it passes from one state of steady equilibrium to another one which is also
steady.  This transition is possible because some constrictions disappear: the
separating wall, formerly rigid and adiabatic, is replaced by another one which
is mobile and diathermic.

b.   A rigid isolated system made up of two subsystems
separated by a rigid and perforated wall.

In this case the final equilibrium requires

0 = 
T

dU
T

dU
 = dS (2)

(2) addit

(1)

(1) addit

+

and when in equilibrium:

dUaddit  =  dUaddit (1) + dUaddit (2)  =  0

immediately,

T(1)  =  T(2)

Moreover, it is clear that in the final state it will be

p(1)  =  p(2)



23

On the other hand, both systems interact in such a way that the
potential energy, Unon addit, which depends on the reciprocal positions of all its
molecules, is minimum; otherwise, these would not be modified, and even less
so in the exceptional case of all the initial positions being equivalent.
Obviously, in this case the system is conservative, and  Uaddit is maximum in
the new equilibrium.  Thus it can be shown that

Uaddit  =  Uc + U p
addit  =  maximum and constant

The kinetic energy now depends only on  U p
addit    which, by the same criterion,

must be minimum.  Thus, Uc  increases and the entropy grows.  We have
tacitly assumed that, once the two subsystems are mixed, the starting
hypothesis continues to be verified:

U p
addit (1)  =  A1Uc

(1) and U p
addit (2)  =  A2Uc

( 2)

c.    An isolated rigid system made up of two simple subsystems
separated by a mobile adiabatic wall.

In this problem the conservation of internal energy is also shown:

constant U)U(U = UU = U addit non
p

addit
pc

addit nonaddit =+++

Here also the entropy depends on,  Uaddit ,  satisfying

Uaddit  =  Uaddit (1) + Uaddit (2)

and furthermore,

T ( 1)  =  dU addit (1)

dS (1)             T (2) =  dU addit (2)

dS (2)
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However, in the present case, it cannot be affirmed that, in all virtual
evolutions,  dS = 0 ,  d2S < 0 ,  is satisfied, even if it is true that

dUaddit (1) + dUaddit (2)  =  0

in the possible steady equilibriums.  As a result, the temperatures which
correspond to the new state of equilibrium remain indeterminate; (if this state
is obtained, since, if there is no internal dissipation of the exchanged work, the
system will be oscillating).

On the other hand, the variations in volume comply with:

dυ1  =  –dυ2

since the volume of the compound system is constant.  As  Unon addit  depends
on the variations in volume, we can write

dU non addit  =  dU p
non addit  =  – p( 1)dυ1 – p( 2)dυ 2

and in the state of equilibrium (if one is reached) the value of this potential
must be extremum, so that:

p(1)dυ1 + p(2) dυ2  =  0

and when the volume is constant, we immediately get the result:

p(1)  =  p(2)
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Thus we definitively prove the physical intuition that this question is only
partially determined.

8. IDEAL GAS.

According to classical thermodynamics, in an isolated system it
is:

U  =  Uc + Up  =  constant

but now  Uc  and  Up  are also constant.

There is no interaction amongst the molecules, so that  U p
non addit =

constant; the potential of elastic shock is not taken into account and the
internal potentials of each molecule, such as  U p

addit vib   ,  etc, are considered as

being included in  U c ,  on account of the energetic "principle of
equipartition".  From the thermodynamic paradigm that we are expounding,
the entropy should be constant, whilst in the customary formulation it is:

[ ]  S + T Ln +  LnkN S 02 ′= lυ

(with    l  = degrees of freedom of the system).

And being  T = constant ,  we shall get

S  =  knLn υ + ′ ′ S 0

that is to say, it only depends on the volume  u .  Nevertheless, in an ideal gas,
seen in a way which is more in keeping with reality, there are: on one hand the
elastic potential, which depends on the average distance between the
molecules and also on their internal additive potentials (such as vibration), and
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on the other hand the aforementioned inner potentials, which are additive.
The elastic potential is then non-additive (at least in part).  We may
definitively write also for an ideal gas:

Uc + U p
addit  +  U p

non addit  =  constant

which in the new paradigm is reduced to:

constant UAU addit non
pc =+

The kinetic energy  Uc  of an ideal gas will not be constant now; when it
expands it will increase –as will the entropy– so  U p

non addit   decreases.  In the

classical explanation this increase is caused by the increase in volume.  When
Uc  varies, so will the temperature  T ,  which increases with the expansion of
the ideal gas, while it remains constant in the customary paradigm.  The
average quadratic speed  v*  is constant in this case, and therefore different
from the speed  v ,  which defines  Uc  in the first.

Since both entropies must coincide, as we are dealing the same
ideal gas seen from the point of view of different theories, we can write:

S  =  kNLn υ + ′ ′ S 0   =  cNLn v + S0

that is

υk  =  constant vc

If the system is open, quasi-static in its evolution, both of these
thermodynamic paradigms are still applicable and then it is

002  S+ v cNLn  S + T) Ln +   kN(Ln = S ≡′lυ
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which immediately gives us,

constant = T 2

k
k

l

υ  vc

From the statistical point of view analogous equivalences can be
made:

S  =  kLn W  =  cNLn v + S0

and it is

Wk  =  constant vcN

This equality could be written whenever the internal energy is additive (closed
system), since this is a condition for the application of "BOLTZMANN's
principle".  In this sense statistical thermodynamics is more restrictive.

9 THE NERNST-PLANCK PRINCIPLE.

As shown earlier on, one way of making entropy satisfy the
NERNST-PLANCK principle is to define it in this way:

S*  =  cNLn (v+1) + S*0

and now we have

T*  =  aµv(v+1) (instead of T  =  aµv2 )
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since both are annulled for  v = 0 .  By way of an example, let's see what
happens with hydrogen:

µH  =  1.67 ⋅ 10 –27 kg

 k  =  1.4 ⋅ 10 –23 J/ºK

In order to calculate  vH  we can use the expression

vH  =  T59.110 = 2kT3 ⋅µ

for  1ºK  we get  v = 159 m/s ;  even with  0.001ºK ,  it is  vH = 5m/s
The differences between  T  and  T*  are minimal:

T *
T

=  v +1
v

which in the first case gives us

T *
T

 =  160
159

 =  1.006

and in the second,

T *
T

 =  6
5

 =  1.2

So far, the hypothesis seems acceptable.
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10.  CARNOT’s  CYCLE.

Here we are dealing with a compound system made up of four
subsystems: a) the thermostat (1) at temperature  T1 ,  b) the thermostat (2) at
temperature  T2 < T1 ,  c) the substance or simple system which follows the
cycle, d) the system which absorbs mechanical work    w .  As a whole we
shall consider it as being isolated.  The mass of the system which follows the
cycle is:

m  =  Nµ

When  N  is the number of mols (or molecules in this case) and  µ  is the molar
(or molecular) mass.  The cycle, closed by two adiabatics  and two
isothermals, can be considered as being broken down into infinitesimal cycles
in their isothermal phases.

In each one of these the system absorbs internal energy at the
high temperature of  T1 ,  and loses internal energy at the temperature      T2 <
T1 ,  in contact with the corresponding thermostats (differential isothermal
phases); the difference is changed into mechanical work  dw .  This internal
energy is additive, so the thermostats transmit or absorb it whilst the volume
remains constant and, as a result, the non-additive internal energy does not
vary.  Moreover, in the system which travels round the cycle, its volume does
not vary in a closed cycle and its non-additive energy remains unchanged.

The total work  w  is, obviously, the sum or integral of these
infinitesimal works  dw .

For the conservation of energy, we have

dUaddit (1) + dUaddit (2) + dw  =  0

the first two terms correspond to the energy of the thermostats (1) and (2),
which the system absorbs or loses, respectively, with the  temperatures  T1 and
T2 .  In the phase of isothermal expansion, the system undergoes a differential
increase in temperature –which is matched by an increase in the average
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quadratic speed in its molecules,  dv1 ,  at the speed  v1 –  and in the phase of
isothermal compression, the variation is in the opposite direction    –with an
increase of  dv2  at speed  v2 –  so that when the cycle is completed there is a
return to the same temperature as at the start.

We can express the earlier variations in internal energy in
accordance with the average quadratic speeds of the system  v1 ,  v2 ,
corresponding to the temperatures  T1  and  T2  in which they occur.  We shall
have:

Uaddit  =  AUc

so that the first equation can be written

AdUc
(1)  + AdUc

(2)  + dw  =  0

with

Uc
(1)   =  12Nµv1

2 Uc
(2)   =  12Nµv2

2

The efficiency of CARNOT's cycle will be:

η  =  
11

22

11

22
)1(

c

)2(
c

)1(
c

dvv
dvv

+1 = 
dvvN
dvvN

+1 = 
AdU

AdUAdU
µ
µ+

Since the evolution is quasi-static, the composite system and its
subsystems are permanently in steady equilibrium: the entropy is constant in
the isothermal phases and remains unchanged in each complete infinitesimal
cycle.  Let us take a more detailed look at this extreme: in the two adiabatic
phases the total variation is zero, since the system returns to the initial speed
(temperature) and the thermostats do not intervene.  In each differential
isothermal phase, there is a variation of the entropy in the system which
follows the cycle –variations  dv1  and  d v2  of the average quadratic speed,
(see fig.1)– but, as this remains constantly in thermic equilibrium (except for
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infinitesimals) with the thermostats, the latter undergo equal and opposite
variations of entropy; the entropy does not vary and, since the system returns
to its initial condition, we can write

dS(1) + dS(2)  =  cNdv1/dv1 + cNdv2/v2  =  0

(the entropy of the simple system is  S = cNLnv + S0 ) and this gives the result

dv1

dv2

 =  –
v1

v2

and the efficiency can be expressed:

1  
T
T

–  1 = 
v

v
–  1 = 

2

1
2
1

2
2 ≤η

      (T = aµv2 ,  as pointed out earlier).

Finally, it must be emphasized that the mechanical system, which
absorbs work  w  (or supplies it if the cycle is functioning in the opposite
direction), does not contribute to any variation in the entropy, as the velocities
of the masses which make it up (piston, connecting rods, etc) are infinitely
slow.

Only CARNOT's cycle, between two thermostats, can have the
efficiency  η  which was found, since the equilibrium of the system with these
thermostats requires that these two stages must be necessarily isothermal; in
any other exchange of energy which is not isothermal the velocities  ′ v 1  ,  will
be less than or equal to  v1 ,  and the  ′ v 2   will be greater than or equal to  v2 ,
so that,
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average value of: 2
1

2
2

2
1

2
2

v
v

 > 
v
v
′
′

and the efficiency will be less:

′ η   <  η

The other two phases of the cycle must, likewise, be adiabatic, because the
system is thermically isolated.

If the evolution of the system were not infinitely slow (quasi-
static), no constant equilibrium would be able to exist between the system and
the thermostats, nor within it in the adiabatic phases; nor would there be
equilibrium with the system  w  ,  where mechanical work is released or
absorbed: if its speed (or that of its component masses) were not infinitely
slow, we should have to take into account its contribution to the variations of
entropy (according to the new paradigm expounded here, which can be
applied to any system of masses in movement).  Therefore, in the adiabatic
phases the evolution must also be quasi-static.

Being the equilibrium always constant, it is perfectly possible to
invert the direction of CARNOT's cycle, it is reversible.  In this case, we
should have a "heat pump".

11.   STABILITY.

For a compound system to remain in steady equilibrium it must be
isolated.  It must satisfy:

(Up
addit  + Uc ) + U p

non addit   =  U0  =  constant
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Which with the initial hypothesis can be written

AUc + U p
non addit   =  U0

The static equilibrium of the system requires that:  U p
non addit   reaches a constant

minimum value in this state and, therefore,  AUc  must be maximum and
constant.

AdUc  =  0

But this condition is not sufficient for the system to be steady; the entropy can
vary: increase, decrease or remain invariable.  If the entropy is variable,
obviously the system does not remain in equilibrium; the condition is
necessary:

dS  =  0

This requirement is not absolutely general; as we shall see, there may exist
some system in steady equilibrium which does not comply with it (cases of
indetermination).

Furthermore, we shall now see that it is sufficient.  In every
virtual evolution of the system in steady equilibrium the potential energy must
undergo positive increases and  Uc  must decrease and also entropy, which
must be maximum in steady equilibrium, that is:

d2S  <  0

To demonstrate this extreme we shall start with an isolated
composite system made up of two simple subsystems, for the sake of simplicity
and still speaking in general terms, as the result can be extended to any
number of subsystems.  We can show:
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AUc  =  12A1N1µ1 v1
2  + 12A2N2µ2v 2

2   =  constant

therefore,

AdUc  =  A1N1 µ1v1dv1  + A2N2 µ2v2dv2  =  0
(extremum)

The second condition requires:

dS  =  d
A1

a1

N1 Ln v1 +  
A2

a2

N 2 Ln v2

 

 
 
 

 

 
 
 

  =  0 (extremum)

that is to say,

dS  =  
A1

a1

N1
dv1

v1

 +  
A2

a2

N2
dv 2

v2

  =  0

which with the preceding one leads us immediately to

a1µ1v1
2   =  a2µ2v 2

2

which, as we said earlier, expresses the condition of steady equilibrium

T1  =  T2

It only remains to conclude that in all virtual evolutions  d2S < 0 .  We
therefore differentiate, for the second time, the first and second condition.  As
Uc  is constant, we shall have,

A1N1µ1(dv1)
2 + A2N2µ2(dv2)

2  =  –(A1N1µ1v1d
2v1 + A2N2µ2v2 d

2v2)
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together with

d2S  =  
( ) ( )

















2
2

2
2

2
2

2
2
1

2
1

1
1

1

2

2
2

2
2

2

1

1
2

1
1

1

v
dv

N
a
A

+
v
dv

N
a
A

–
v
vd

N
a
A

+
v
vd

N
a
A

in which the second parenthesis is obviously  > 0 .  The first, by virtue of the
preceding result and with  T1 = T2 ,  we can write

2
222

2
2

222
2
111

1
2

1111

va
vdNA

va
vdvNA

µ
µ

µ
µ

+   =

[ ]22
22221

2
11112

111

vdvNAvdvNA
va
1

µµ
µ

+   =

[ ]22222
2

1111
1

)dv(NA)dv(NA
T
1–

µµ +   <  0

so that the definitive result is:

d2S  <  0

thus we are dealing with a maximum of entropy which is obtained when the
temperatures of both subsystems become equal.

If the constrictions do not vary the system will remain steady, but
if they alter the system will evolve, its entropy will increase, until it reaches
another state of relative maximum in which it will return to a state of
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steadiness.  If the initial temperatures of the subsystems remain constant or
equal, the composite system cannot evolve.

Nevertheless, there may occur, as explained in  7.  c) ,  an
evolution which is undetermined when the separating wall is mobile and
adiabatic.  In this case –if there is inner dissipation in each of the subsystems–
steady equilibriums can be obtained when the final temperatures of both are
different.  But we must point out that the temperatures will generally vary,
even if they were identical to start with.  If there is no inner dissipation, the
system will oscillate: the  U c  will not remain constant but will change
between relative maximums and minimums and its entropy will do the same.

This indetermination occurs because, even when a steady
equilibrium is obtained, all virtual evolutions of systems do not satisfy the
general conditions:

dS  =  0 d2S  <  0

thus, if this occurred, it would have to be:

T(1)  =  T(2)

which, generally speaking, does not happen.  As we said earlier, this is a case
of indetermination.

12.   CONCLUSION.

From what has been analysed in this study we may conclude, by
way of a summary, that a composite system obtains steady equilibrium if the
following conditions are true:

– that it is isolated and that  U p
non addit   is minimum, i.e dU p

non addit = 0
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– that:  dS = 0  and  d2S < 0 ,  in any virtual evolution, in an
environment where the position is of steady equilibrium.

Nonetheless, there may be some case of steady equilibrium that
does not satisfy this last condition, like the one which was analysed above.
We can say that the condition of maximum entropy is sufficient for steadiness
but it is not necessary as a general rule and in all cases.

BARCELONA, 9th  April  1996
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